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Does the Interface Experience the 
van der Waals Loop? 

J.  M .  J.  van L e e u w e n  1 

Received March 10, 1989 

A discussion is given of the role of the unstable and metastable parts (the 
"loop") in the equation of state of the van der Waals or Landau type for the 
interface theory. The role of the loop in the field-theoretic renormalization 
calculation of the interface is analyzed. It is shown that in real-space renor- 
realization no loop occurs and that a satisfactory interface calculation can be 
made using Migdal's renormalization procedure. 
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I N T R O D U C T I O N  

In the late 1950s, when Eddie Cohen was a driving force behind the 
activities at the Institute for Theoretical Physics in Amsterdam, the theory 
of phase transitions was at an impasse. On  one hand, there was a substan- 
tial effort at developing improved approximat ions  of the Kikuchi type for 
lattice models ~1) and at deriving integral equations for the correlation func- 
tions of a liquid such as the hypernet ted chain equation/2) These theories 
did predict phase transitions, but very much in the way of the equat ion of 
state derived by van der Waals ~3) in 1873. On  the other hand, also rigorous 
theorems ~4) were then emerging, showing that instabilities in the equat ion 
of state (the " loop" in the van der Waals equat ion)  do not  occur in a 
proper  evaluation of  the parti t ion function. 

The approximate  theories yield a liquid and a vapor  branch. The 
phase transit ion must  be located by finding two phases of equal tem- 
perature, pressure, and thermodynamic  potential  just as Maxwell 's equal- 
area construct ion does for the van der Waals  loop. In the approximate  
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theories there is no distinction between the physical parts outside and the 
unphysical parts inside the coexistence region. 

Thus, at that time the somewhat depressing conclusion was that 
nothing but an exact evaluation of the partition function could produce a 
proper phase transition. 

The loop in the van der Waals equation gives a continuous transition 
from the liquid to the vapor state. Already in 1871 (2 years before the 
thesis of van der Waals!) Thompson (s) speculated about such a continuous 
connection, suggesting that in the interface region between a coexisting 
liquid and vapor, states of matter were realized with densities between the 
liquid and vapor densities, which do not exist as homogeneous bulk phases. 

There is a stubborn folklore that the continuation of the stable 
branches represents the metastable branches of the equation of state. This 
suggestion is tempting because an experimenter often realizes the 
metastable branches quite simply without noticing in the data that the 
coexistence point has been passed. 2 If one accepts, however, that equi- 
librium statistical mechanics boils down to a decent evaluation of the parti- 
tion function (which only gives the stable branches), then one has to be 
optimistic to believe that an error in the calculation explains a non- 
equilibrium problem such as metastability. One may speculate that the 
exact equation of state can be continued analytically into the coexistence 
region. However, neither the possibility of continuation is likely(V)nor the 
relation to metastability clear. (8) 

Yet it is not so simple to dismiss the loop as an artefact of a simple- 
minded approximation. Presumably its greatest stronghold is the role in 
the theory of the interracial profile, which again started with van der 
Waals. (9) As it is the reference point for this paper, I start out with a brief 
summary of its structure. 

1. T H E  C L A S S I C A L  I N T E R F A C E  T H E O R Y  

In Landau's version, phrased in the magnetic language, the classical 
interface theory supposes the existence of a free energy density f(m) as a 
function of the magnetization rn (or order parameter) and a free energy 
functional of the form 

The function f ( m)  has the form of a double-well potential for temperatures 
below the critical temperature. The second term represents the effect on the 

2 Among the wealth of evidence some striking examples can be found in ref. 6. 
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free energy due to inhomogeneities. In a planar geometry an interface 
profile depends only on one coordinate z and obeys the boundary condi- 
tions 

m(z )=  ___m~p, z--* +oo (1.2) 

where rasp is the spontaneous magnetization or bulk value of the order 
parameter. The profile that satisfies (1.2) and minimizes ~,~[m] satisfies the 
equation 

d2m ~f 
A dz 2 -sm=h(m) (1.3) 

In a homogeneous phase h(m) would be the magnetic field associated 
with the magnetization m. Figure 1 sketches a profile and the function 
h(m), from which one sees the necessity of a loop in h(m). The profile equa- 
tion (1.3) has the form of Newton's equation of motion, with A playing the 
role of a mass, the order parameter m as position, coordinate z as time, 
and h(m) as force or - f  as potential. The motion occurs between the 
minima of f(m). Starting at z = - o o  with a negative m, it has to be 
"accelerated" by a positive field h(m) and for z > 0 ,  where m becomes 
positive, it has to be "deaccelerated" by a negative field. So field and 
magnetization have to be opposite in the interface region, which means a 
loop in the magnetic equation of state h(m). Thus, the interface experiences 
the loop and nothing else of the equation of state, as was anticipated by 
Thompson. 

Several arguments can be raised against this theory. (~~ The squared 
gradient in (1.1) is too simple to represent the free energy contributions 
due to inhomogeneities. At best, it suffices near the critical point, where the 
interface is thick and spatial variations in m(z) are slow. For  lower tem- 
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Fig. 1. Magnetization profile m(z) and associated magnetic field h(m) in the classical equa- 
tion (1.3) for the interface. The loop in the equation of state is indicated by the dashed part. 
Note that profile and field are opposite for the same magnetization value. 
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peratures where steep gradients in the interface must be expected, the 
squared gradient must be replaced by a more detailed molecular expression 
involving the direct correlation function.(11 

Near the critical point, (1.3) fails to incorporate properly the critical 
fluctuations in the same way as the standard mean field theory fails for 
bulk critical phenomena. The critical exponent for the surface tension as 
following from (1.3) obeys the scaling laws for mean field exponents. Fisk 
and Widom (12) have repaired this shortcoming by proposing a shape for 
the loop which is consistent with the critical scaling behavior. Thus, scaling 
properties for the interface could be derived in full agreement with bulk 
critical behavior. 

Interpolations for the equation of state or the correlation functions 
from the bulk branches into the coexistence region have, however, no firm 
foundation and consequently demonstrate a certain arbitrariness. For- 
tunately, the shape of the resulting interface is rather insensitive to the 
precise interpolation expression, but this reflects more the general plainness 
of interface profiles than a justification for the interpolation procedure. 

The most severe objection against the classical interface theory as 
embodied by (1.3) (or sophistication thereof) is that it leads to an intrinsic 
interface. In Fig. 1 I have taken the symmetry point m = 0 at z = 0, which 
is arbitrary. The location of the interface has to be found from such 
boundary conditions as the total mass of the liquid-vapor system or the 
net magnetization in the spin system. But apart from this global constraint, 
the classical interface theory does not need an external agent to give the 
interface its shape. Buff et al., ~13) showed, however, that in low dimensions 
d ~< 3 the interface is unstable against surface or capillary waves. 

To see their point, let us denote the transverse coordinate (along the 
interface) by r• and the local deviation of the interface from its equilibrium 
position by h(r• Then, for sufficiently smooth h(r• the energy of a 
deviation is given by 

E[h]=f  dr• { a l l +  IVh(r•189177 (1.4) 

The first term accounts for the increase in area due to the displacement 
h(r• So er is the surface tension of the interface. The second term is added 
in view of its future importance. It represents the gravitational energy of a 
column h(r• dr• of height h(r• Thus, 3p is the mass density difference 
between the phases. 

For smooth h(r• the gradients are small and one may expand the 
square root and introduce Fourier components such that 

1~ dk• 
e[h] = ~ j ~ (~rk~ + g Ap) Ihk• 2 (1.5) 
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where hki are the Fourier components of h(r• If one then assumes that 
these waves are thermally excited with a Boltzmann weight, the partition 
function for the capillary waves is Gaussian, enabling us to calculate all 
desired properties. The mean square displacement of the waves is found as 

dk I k B T 
( h 2 ) = f  (2~)a l a k e + g A p  (1.6) 

Now the importance of the gravitational term is clear. The sum over k• is 
a (d-1)-d imensional  integral and for d~<3 the expression (1.4) diverges 
for g = 0  at the low-k• side. For small k• the expression (1.5) can be 
trusted, as these waves lead to very smooth h(r• For small g, (1.6) 
behaves as 

(h 2) ~ g(d-3)/2, d< 3 

~ Iln gl d =  3 
(1.7) 

Taking this result seriously, one must conclude that @ 2 )  rather than the 
intrinsic width following from (1.3) sets the scale for the interface width. 
Thus, we must expect the interface to behave for g--+ 0 as 

m(z; g ) = m ( z g  (3 a)/4), d <  3 

= m(z/lln gl 1/2) d = 3 
(~.8) 

This forces us to think differently about the profile. Not  only its location, 
but also its shape is severely affected by the external conditions. Without 
a gravity-type field the size of the system will provide a cutoff in the 
divergent expression (1.5). I will limit the considerations in this paper to an 
external field such as gravity for the liquid-vapor transition or a linearly 
varying magnetic field for the magnetic systems. 

The capillary wave theory is neither consistent nor complete. One 
could argue (14) that the fluctuations of the interface are fluctuations in the 
microscopic configurations which are already taken into account in the free 
energy expression (1.1). One can hold also that, if the capillary waves are 
a real contribution, then they must also contribute to the surface tension. 
Thus, cr occurring in (2.3) must be some bare surface tension to be com- 
pleted by the capillary waves to the full or experimentally observed surface 
tension. 

Apart from the a, the capillary wave theory needs also a large-kL 
cutoff as input. This cutoff is necessary to make (1.5) convergent at the 
large-k• side for d =  3. Clearly, it does not make sense to speak about a 
capillary wave of a wavelength comparable to the interparticle distance. 
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Even the thickness of the intrinsic profile, which supposedly displays the 
waves, should be considered as a lower-wavelength limit. The choice of the 
cutoff is more delicate then is usually assumed. ~ I will come back to this 
point in the next section. 

Capillary waves are a real phenomenon. Direct evidence has been 
obtained by molecular dynamics simulations of two-dimensional 
systems. (16) Indirect evidence follows from optical reflectivity 
measurements (~7) and X-ray scattering (~8) on liquid-vapor interfaces. 

The logical step to integrate the classical interface theory and the 
capillary wave theory is to see (1.1) as the proper starting point having 
(1.3) as the optimal profile, of which the fluctuations still have to be taken 
into account. Likely the capillary wave fluctuations are dominant. This 
of course is the viewpoint of the renormalization approach, which I 
summarize in the next section. 

2. THE INTERFACE IN R E N O R M A L I Z A T I O N  FIELD THEORY 

The renormalization approach starts with a subtle difference in inter- 
pretation of the right-hand side of (1.1). Rather than a free energy, it is seen 
as a Hamiltonian for the order parameter field m(r) 

A Vm(r)L2} af[m]= f dr {f(m(r))+~ (2.1t 

For this change in interpretation a new meaning has to be given to f(m) 
and A. Let re(r) be a smooth distribution of the magnetization, e.g., with 
only Fourier components of wavenumber k < kc, where kc is small with 
respect to microscopic wavenumbers and large with respect to macroscopi- 
catly realizable wavenumbers. Then consider re(r) as a given constraint and 
calculate the free energy due to all configurations generated by fluctuations 
of re(r) with wavenumber k > kc. The idea is that this free energy can be 
represented by the integrand of (2.1), i.e., that a function f(m) and a con- 
stant A can be found. The so-defined function f(m) may display a double- 
well structure at low temperatures. This is not against any rigorous 
theorem, since f(m) is not directly related to the bulk free energy. The 
latter is obtained from (2.1) by integrating over all m(r) with Fourier 
components k < kc: 

j ~  dm(r) e -~aeEm~ (2.2) e--~F= 

For a specific system it must be considered a hopeless task to calculate an 
actual f(m) or A, since the constraint of given rn(r) makes the problem 
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more difficult than a direct calculation of the bulk free energy. The f(m) 
and A will also depend on the choice of kc. The renormalization theory 
calculates how f(m) and A change under a change of kc or, what is 
equivalent, under a change in scale. Near the critical point a number of 
quantities are found to be insensitive to the details o f f ( m ) .  For these 
universal properties the precise form o f f (m)  is irrelevant. Thus the difficult 
task of determiningf(m) can be avoided and at the same time the universal 
properties apply to a wide class of systems. Of course, the results are 
limited to the critical region, which can be loosely defined as the region 
dominated by the long-wavelength fluctuations of m(r). 

The universal quantities can only be extracted systematically in an 
expansion in the parameter ~ = 4 - d .  Ohta and Kawasaki ~19) started the 
renormalization program for the interface by calculating the profile to first 
order in e. They found that the scaling properties for the interface proposed 
by Widom ~z~ are satisfied. Setting ~ = 1 or d =  3, their interface is numeri- 
cally close to the Fisk-Widom profile. One has to be cautious in seeing this 
as a justification for the Fisk-Widom theory. To order e, they managed to 
write the profile equation in the form (1.3), thus providing a function h(m) 
in the coexistence region. Comparing this function with the Fisk-Widom 
interpolation, they notice differences, but one can qualify these as minor. 
More important is that their trick to derive an equation of the form (1.3) 
works only to order e and relies heavily on the explicit mean-field form for 
m(z) in zeroth order in e. In reality, the profile equation does not have the 
simple form (1.3), but is a nonlinear integral equation for m(z). So the fluc- 
tuations change h(m) into a nonlocal relation. 

An interesting side remark is that Ohta and Kawasaki compare their 
h(m) with the analytical continuation of h(m) from outside the coexistence 
region into the coexistence region. Again to order e, such an extrapolation 
exists and it diverges at the spinodal of the zeroth-order mean-field expres- 
sion. Apart from the fact that one does not know what such divergence 
means, one has the problem that the continuation must be made before the 
powers in e are exponentiated, which has to be done in order to obtain the 
correct critical exponents. After the exponentiation the critical singularities 
forbid an analytical continuation. Therefore one cannot say that the 
e expansion supports the classical equation (1.3). 

The e expansion misses the difficulties associated with the capillary 
waves, which start to become divergent for d =  3 or e = 1. The influence of 
capillary waves in the renormalization theory has been studied by Jasnow 
and Rudnick. (2~) As no systematic expansion exists in d =  3, their results 
are based on the one-loop approximation. They find that the interface 
width diverges as ]In gl 1/2 and that m(z) has a shape as indicated in (1.7). 
The approximation cannot be considered as accurate enough to allow a 
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detailed comparison with experimentally measured interface profiles. ~17/ 
When quantities like the correlation length are used as adjustable 
parameters a reasonable fit is obtained. 

A more phenomenological approach has been taken by Sengers and 
van Leeuwen. (22) Following Weeks, (23~ they argued that critical fluctuations 
up to a certain wavelength do lead to an intrinsic interface which can be 
described by the Fisk-Widom theory. The longer-wavelength fluctuations 
are dominantly given by the capillary wave theory. Thus, the Fisk-Widom 
surface tension is the bare value entering the capillary wave Hamiltonian. 
The other constants of the capillary wave theory are fixed as follows. There 
is a well-known discrepancy between the Fisk-Widom critical amplitude 
for the surface tension and the measured value. (24~ This is attributed to the 
capillary wave contribution to the surface tension. Usually one does not 
pay much attention to the renormalization of the surface tension due to the 
capillary waves since the effect is finite. As was noted by Kayser, (15~ it 
requires another parameter in Week's column model (23) to make the 
capillary wave picture precise. This parameter is used by Sengers and van 
Leeuwen to fit the capillary wave contribution to the measured value. 

Once the idea is accepted that the capillary waves contribute to the 
surface tension, one is more or less forced to the notion of a wavelength- 
dependent surface tension. The measured value is the long-wavelength limit 
and the bare value some short-wavelength value. Small wavelengths con- 
tribute to the surface tension felt by the longer waves. In the capillary wave 
theory such a renormalization is absent because the waves are independent 
modes. Nevertheless it is easy to incorporate the idea in a self-consistent 
way. (22/ In this line of thought the short-wavelength cutoff is fixed by the 
condition of minimal renormalization. Thus, a capillary wave theory is 
constructed without adjustable parameters for the interface profile. The 
agreement with the so-determined profiles and the experimental data of Wu 
and Webb (17) is good, but typical gravity or cutoff effects are not borne out 
by the experiments. Whether this is a real discrepancy or a pushing of 
relatively old experiments beyond their limits can only be settled by more 
accurate data. Such new experiments might then also reveal information on 
the narrow transition zone near Tc where the interface below Tc smoothly 
goes over in a field-induced order parameter profile above Tc. (2v) 

In conclusion, one may say that renormalization has the loop as input 
on some bare level, which is then made diffuse (nonlocal) by the fluctua- 
tions. Such a diffuse loop cannot qualify as an extension of the equation of 
state into the coexistence region and its sole application is in the theory of 
the interface profile. 

For a full discussion of the interface profile near and far below the 
critical point a more ambitious renormalization program starting from the 
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microscopic Hamiltonian is needed. This program exists for lattice systems, 
albeit less well founded and systematic than the field-theoretic approach. It 
is called real-space renormalization and the remainder of this paper is 
intended to show how interfaces come about in this theory. 

3. THE INTERFACE IN REAL-SPACE R E N O R M A L I Z A T I O N  

Let us consider an Ising model on a d-dimensional lattice with a 
varying magnetic field H i in the Hamiltonian 

~,UfEs ] = ~  H i s i +  K ~ sis j (3.1) 
i (07 

K is the coupling constant between a neighboring pair (0"). The field Hi 
has the form 

H i = gz i (3.2) 

where zi is the z coordinate of site i. The field gradient g plays the role of 
the gravity constant for a fluid. The interface will settle around the plane 
Z = 0 .  

A real-space renormalization transformation is a map of Yf[s]  onto a 
new Yf'[s ' ] ,  where the new spins s'i, are located on a new lattice of which 
the lattice distance is b times the old lattice distance. In general 3r '] will 
not be of the same simple structure as (3.1). It will contain usually all kinds 
of coupling constants, but for meaningful transformations J f ' [ s ' ]  must be 
dominantly governed by a field H~, and nearest-neighbor coupling con- 
stants KI,. We include all constants under a general label K~i, where ~ is 
the type of interaction and i its location. In (3.1) the nearest-neighbor 
coupling constant is the same for all neighbor pairs, but we must be 
prepared that the spatial inhomogeneity due to H i transfers in the renor- 
malization process to all coupling constants. 

We represent the renormalization transformation by the set of equa- 
tions 

H;, = H;, [ H i ,  Kfli] 
K'c,i, = K'~i, [ H i ,  K~i] 

(3.3) 

In principle, H~, depends on all the fields Hi and coupling constants K~i, 
but we require that the transformation is approximately local, i.e., H'i, is 
mainly determined by the Hi and K~i in the neighborhood of site i'. We 
have to formulate the equations in their general form, as they have to be 
applied repeatedly and the special character (3.1) is lost soon. 
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The free energy of the system characterized by Hi, Ksi is a functional 
F[Hi, Ksi] and transforms under (1.3) to 

F[ Hi, Ks,] = G[ H~, K~i] + F[ H'c, K'~c ] (3.4) 

where G[H~, Ksi] is the spin-independent constant which is formed under 
renormalization. 

The magnetization can be defined as 

mi = aF[Hi,  Ksi]/6Hi (3.5) 

and thus variation of (3.4) with respect to H i yields 

where e~ is the abbreviation of 

e ~i = 6 F/ f Ksi 

+ ~ e'~i,(,SK'~c/6H~)} (3.6) 

(3.7) 

We see from (3.6) that the various derivatives of the free energy couple and 
thus (3.6) has to be supplemented by an equation for e~i which follows 
from variation of (3.4) with respect to Ks/, 

e~=6G/6Ksi+ ~ {mi,(6H'c/6Ks~)+ ~ e'~i,(6K'~c/6Ksi)} (3.8) 

The derivatives in (3.6) and (3.8) follow from the renormalization equa- 
tions (3.3) and the expression for G[Hz, K~i]. So Eqs. (3.6) and (3.8) relate 
the set {mi, esi} to the set {re'c, e'sc} of the renormalized system. 

Repeated renormalization generally drives the system to an extreme 
situation: very weakly coupled systems (high temperatures) or very 
strongly coupled systems (low temperatures). In the extreme situations, 
{m~, e~i} must be determined directly from the Hamiltonian. We will refer 
to these values as boundary conditions on the renormalization flow. In 
order to find mg for the original system (3.1), we must apply the renor- 
malization process twice. First we carry out the transformation (3.3), with 
(3.1) as input, sufficiently many times such that an extreme situation has 
evolved in which we know how to calculate {mi, es~}. Then we retrieve our 
steps in (3.3) and calculate simultaneously from (3.6) and (3.8) the set 
{mi, e~i} in the previous system until the starting Hamiltonian has been 
reached and the corresponding {mi, esg} are found. 

This process is the same as the one by which the equation of state of 
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a homogeneous bulk system can be determined. Then we have spatially 
independent Hi=  H and K~;= K~. The transformation (3.3) simplifies to 

H' = H'(H, K~) 
(3.9) 

K'~ = K'~(H, K~) 

For the homogeneous version of (3.6) and (3.8) we must take into account 
that the number of sites N in the old system is b a times the number of new 
sites: 

m-- N- I(RG/OH) + b-a [m'(OH'/OH) + E e~(OK'~/OH)] 
(3.1o) 

e,= N-I(OG/OK,) + b a[m'(OH'/~K~) + ~ e'~(OK'~/RK~) l 

The function re(H, K) follows by renormalizing the (H, K) system to an 
extreme situation where m and e~ can be calculated. Then, going back to 
the original system, repeated application of (3.10) yields the desired 
re(H, K). 

Before embarking on the discussion of the solution of the 
inhomogeneous case, I indicate the behavior of re(H, K). Figure 2 is a 
sketch of the flow lines of the renormalization process. On the basis of this 
picture, one may distinguish three regimes, as follows. 

a) The High-Temperature Regime. Here K<Kc, where Kc is the 
critical coupling. Repeated renormalization will drive the coupling to zero 
and the system becomes a free system. There the magnetization is given by 

m = tanh Hf (3.11) 

\ 
K 

/ 

H 

Fig. 2. Flow lines of the renormalization for Migdal's scheme (4.1). Here K =  K,., H =  0 is 
the unstable (critical) fixed point. The line K =  0 is a line of stable fixed points. 

822/57/3-4-2 
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where H F is the field which has been developed from the original field. 
Similar expressions can be given for the e~. From this boundary condition 
the curves m ( H ,  K )  can be obtained. 

b) The Low-Temperature Regime. Now K > K  c and repeated 
renormalization leads to strong coupling. At the same time any finite H > 0 
will grow to large values, while H <  0 will decrease to large, negative 
values. The boundary condition is therefore 

m=  _1 H X 0  (3.12) 

and similar expressions for the e=, because a strongly coupled system in an 
external field is fully magnetized. The sudden jump in the boundary condi- 
tion when H passes through H = 0  is responsible for the spontaneous 
magnetization in the original system. It is interesting to note that this 
renormalization only produces stable branches of the equation of state even 
when the procedure is approximate. By symmetry, magnetization and field 
are always of the same sign. 

c) The Critical Regime. Here K ~  Kc and it takes the renormaliza- 
tion process a long time to produce couplings outside the critical regime 
either K >  Kc or K <  Kc. In the mean time the field grows rapidly. By the 
time the trajectory leaves the critical region, the field is usually sizable 
(when the initial H is not too small) and it continues to grow further. So 
it does not make much difference whether the boundary condition (3.11) or 
(3.12) is applied. On the way back the magnetization is broken down along 
the flow line, which takes longer the closer one started out near the critical 
point K = K  C, H=0.  So the spontaneous magnetization disappears at 
criticality and the equation of state joins continuously from above and 
below Kc. 

For the inhomogeneous system (3.1) one may consider the local 
approximation 

loc = re (Hi  ' K )  (3.13) mi 

which follows by ignoring all nonlocalities in (3.6) and (3.8). In the high- 
temperature regime this is a smooth curve for small gradients g, which 
justifies the approximation. Near Kc and small z the local approximation 
develops strong gradients which develop into a jump below K,.. Then the 
local approximation fails and nonlocal aspects in (3.6) and (3.8) will 
smooth out the local curve to a continuous interface. 
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To be more precise, an actual realization of the renormalization 
is needed. In the next section I describe the results of a simple but 
illuminating approximation due to MigdalJ 25~ 

4. M I G D A L ' S  A P P R O X I M A T I O N  

Figure 3 shows a b x b section of a ( d=  2)-dimensional (square) lattice. 
The idea is to change the scale by eliminating the spins which are not on 
the corners. In order to do this, couplings inside the square are moved to 
the edges as indicated by the arrows. With only bonds along the edges, the 
intermediate spin on the edges can be eliminated by a one-dimensional 
decimation which induces a coupling between the corner spins and a new 
field on the corner sites. Considering the corners as the sites of the new 
system, a new Hamiltonian for the corner spins results which again has a 
field term and a nearest-neighbor interaction. For our purpose it is very 
attractive that Migdal's scheme can be implemented in arbitrary dimension 
d and for arbitrary rescaling factor b. We use the latter to study the 
generator of the transformation by taking b = 1 + dt, where dt is an 
infinitesimal increase in scale. Without derivation I present here the main 
formulas; the details are given elsewhere. ~26) 

The homogeneous renormalization equation can be written as 

OH/Ot = 2dI:I(H, K) 

OK~at= (d-  1) K+ K(I-I, K) 
(4.1) 

where/:/, K, and the spin-independent constant ~ (taking the role of G/N)  
are given by 

T T 

! i E 

Fig. 3. A b x b section (b = 3) of a square lattice. The dashed internal bonds are moved to 
the edges as indicated by the arrows, enforcing the edge bonds by a factor b d- 1 No magnetic 
fields are moved. The corners are the sites of the renormalized lattice. 
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/:/(H, K) = - ( t anh  H)/s K) 

-:--7z-7__ - e -4~ 1 + q(H, K) (4.2) /((H, K) 4q(H,K)  In 1 - q ( H ,  K) 

~(H, K) = K +  1 ln(1 -- e 4~) _ (c tanh 2K) gT(H, K) 

with the auxiliary function 

q(H, K) = [-tanh2H + e -  4K(1 - tanh2H) ] 1/2 (4.3) 

Equations (4.1) give the rate of change of H and K with an increment in 
scale. The corresponding flow equation for the magnetization m and the 
nearest-neighbor correlation e take the form 

Orn/Ot = d(m - J~H) 

8e/Ot = e - Tx  (4.4) 

where Tx is the x derivative (x = H, K) of the linear expression in m 
and e 

_M'+ M 
Tx=~xx +2m 0x e 8--x- (4.5) 

So one sees that the three functions /:/, K, and ~ fully determine the flow 
of the Hamiltonian (4.1) and the flow of the magnetization (4.4). The bulk 
relation m(H, K) can be found from (4.1) and (4.4) as indicated in the 
previous section. 

The next step is the flow equations for the inhomogeneous case. Here 
we have a different situation for the Hamiltonian parameters H and K and 
the derivatives of the free energy m and e. Playing with the initial gradient 
g, one can make the spatial variation of the Hamiltonian arbitrarily small. 
During the renormalization process the gradients will grow, but they are 
still controlled by the input value of g. So nonlocal effects in the 
Hamiltonian flow can be made small by letting g ~ 0. The inhomogeneous 
equivalent of (4.1) becomes 

OH(z, t)/Ot = z OH(z, t)/8z + 2dtt(H(z,  t), K(z, t) ) 
(4.6) 

OK(z, t)/Ot = z OK(z, t)/Oz + ( d -  1) K(z, t) + K(H(z,  t), K(z, t)) 

The terms with z(O/8z) arise from the renumbering of the sites in the 
scaling process. 

In contrast, the nonlocal aspect cannot be ignored in the flow for m 
and e. The reason is that arbitrarily small g can still lead to large gradients 
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in the magnetization, as the local approximation (3.13) shows. The flow 
equations for m(z, t) and e(z, t) may be written in first approximation (26) as 

Ore(z, t) Orn(z, t) 
Ot Oz 

~ 
\ Ot/ol 

Oe(z, t) Oe(z, t) + 
Ot - z ~  [e(z, t)-PK] 

(4.7) 

]bH and J~X are the same expression (4.5) now involving H(z, t), K(z, t), 
m(z, t), and e(z, t). The nonlocal contribution to the magnetization flow is 
given by 

( - ~ ) n , : ( l ~  210I:t~02m(z't)OH] Oz 2 (4.8, 

In principle, all higher derivatives and combinations thereof occur, but 
(4.8) gives the dominant term, provided that m(z, t) is still a relatively 
smooth function of z. 

One can make Eqs. (4.6) and (4.7) somewhat more transparant by 
removing the spatial rescaling term through the transformation 

H(z, t) = I2I(ze ' -  ,i, t) (4.9) 

Here tf is the duration of the renormalization, which I discuss later. 
Inserting (4.9) and similar expressions for the other fields into (4.6) and 
(4.7), one finds the flow of the Hamiltonian 

Ot 
0K (4.10) 

- ( d -  R +  R) 

and for the magnetization 

Orb 
~ T =  d[ rh -  J'i4] + e2(t-tl) ( ll- 2 

O~ 
Ot [O Tx] 

1 0B'~ 02r~(v, t) 
2 ~ , )  0v 2 

(4.11) 

To avoid confusion, I have indicated the spatial argument of rh(v, t) by 
v = z e x p ( t - t s ) .  One sees that v does not occur explicitly in (4.10), but 
only as an argument of H and/s So the solution of (4.10) is for each v a 
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local problem as a consequence of the fact that we have ignored nonlocal 
aspects in the Hamiltonian flow. In (4.11) v occurs explicitly as a second 
derivative in the nonlocal flow term. For the solution of (4.10) and (4.11) 
we must start with the initial values 

I2I(v, O) = H(ve 's, O) = get% 
(4.12) 

K(v, O) = K(vetS; O) = K 

calculate the final fields/q(v, ts) = H(v, ts) etc., impose the boundary condi- 
tions 

rh(v, r  tf), d(v, t f )=e (v ,  tf) (4.13) 

role back the solution (4.10), and compute the change in the magnetization 
through (4.11), with the result 

m(v, O) = rh(ve -'l, 0) (4.14) 

Qualitatively it is easy to see what the nonlocal term does to the profile. At 
the start of the backflow it acts as a diffusion term. Its influence dies out 
quickly through the exponential factor in front of it. I discuss the three 
regimes mentioned in the previous section. 

In the high-temperature regime the boundary condition (3.11) 

rh(v, ti) = tanh/~(v, ts) (4.15) 

is a smooth function, as H(v, ts) is weakly dependent on v for small g. Not 
surprisingly, the influence of the nonlocal terms is vanishing and the local 
approximation gives the profile. 

In the critical regime two growth rates play a role. For H-+ 0 and 
= K - K c  ~ 0 the flow (4.1) reduces to 

~H/& ~- y H H  or H(t )  ~- e-VHtH 
(4.16) 

&lOt ~ y v r  or z(t)  ~- eYr'~ 

These formulas apply as long as H and r are small. The magnetization m 
varies in the critical regime as [see (4.4)-] 

Om/Ot ~- ( d -  y n )  rn or re(t) ~- e Id- YH)tm (4.17) 

The trajectory leaves the critical regime when v(t) is of order unity. We 
take this as a measure for the duration tr 

e - y r t y =  I'cl (4.18) 
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The field gradient grows in tr to 

gf=e(YM+ l)tfg = g I-cl (Ylt+ I)/yT (4.19) 

The parameter gf  will be a characteristic of the behavior of rh(v, ts). With 
(4.14) and (4.17) we find 

m(v, O)= [-c[(a- Ym/yr rh(v I'c[ llyr, O) (4.20) 

If we could forget the dependence of rh on gs for a moment, we would have 
Widom's scaling law (1~ for the interface. The power in front of rh gives the 
magnitude of the spontaneous magnetization below Tc and the power 
inside gives the correlation length ~, since 

=r  Ir[ '/yr (4.21) 

The dependence of rh on gf is, however, important. To see the behavior for 
-* 0 we exchange r for g and write in place of (4.20) 

m(z; g, r ) =  g(a yH)/(yu+ l)rh(zgl/(yu+ 1), ,g  yr/(y~+ 1)) (4.22) 

a scaling form which has been proposed earlier. (27~ In (4.22)one can set 
r = 0 and the critical dependence of the profile on z and g follows. 

The scaling property (4.22) is a general feature of the critical interface 
profile. The precise shape of rh must follow from the boundary condition. 
For  K =  K c (or r = 0) there is a problem in the center of the system z " 0, 
since the center coupling K(0, t) = Kc remains critical. Thus, one cannot use 
the free system boundary condition (4.15) nor the low-temperature condi- 
tion m = 1. The best compromise is to impose the local value at a time tf 
when most of the system has moved away from criticality. (26) 

In the low-temperature regime a similar problem arises with the local 
boundary condition 

rh(v, ts) = sign v (4.23) 

which varies too fast at v = 0  to allow the expression (4.8) to be valid. In 
the large-K regime the flow equations simplify to 

afit/3tdt:I or /~(t) = ea'I~ 

8Is = ( d -  1 ) R or K(t) = e (a- 1)t/~ 
(4.24) 

while the flow of the magnetization is controlled by the nonlocal term 

&h(v, t ) /& = (1/6) e 2(t- 'i) ~?2rh(v ' t)/av 2 (4.25) 
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This diffusion equation can be solved explicitly, 

oz~ C - -  ( v  v ' ) 2 / D ( t )  

fit(v, t ) =  f _ ~  dr' [ lrD(t)]l /2 fit(l;', t f)  (4.26) 

with 

D(t) ~ ~ |'I = e 2(' '-qJ dt' (4.27) 
Jl 

The picture is that after a finite initial period the trajectory reaches the 
large-K regime where (4.26) applies. For large tl we may translate the 
solution in terms of the gradient g, which grows as 

g( t )  = e (a+ 1)tg (4.28) 

So 

e fJ = (g/gf)a/(a+l) 

The magnetization at t = 0 is then, according to (4 .14) ,  

re(v, O) = f i t ( v ( g / g f )  1/(d+ 1), 0) 

(4.29) 

(4.30) 

with fit(v, 0) given by (4.26) and D(0) ~- 1/3 (for ty large). For large t r the 
system develops a steeper and steeper gradient and one expects that 
fit(v, tF) approaches the step function (4.23). This gives a definite limit to 
fit(v, 0) and to m(v,  0) except for the value of gy. As mentioned, the validity 
of (4.25) breaks down for too steep gradients and so the tj. and gs must be 
chosen with care. Information can be obtained from the d = 1 case, where 
Migdal's procedure is exact [but (4.25) still approximate]. Taking g l - - 3  
and fit(v, t f )  given by (4.23), the exact d =  1 profile follows. (28) Thus, gf  ~- 3 
and (4.23) is a good combination in any dimension. (26) 

From (4.30) one sees a behavior which resembles the capillary wave 
result. The dimensional dependence is, however, different. If we expand 
around d =  1 

1 1 d - 1  m . . [ ~  . , .  

d + l  - 2  4 

3 - d  1 d - 1  (4.31) 

4 - 2  4 

we see that the powers agree near d =  1, where Migdal gives the correct 
trend. (25) 
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5. DISCUSSION 

The classical theory of interfaces relates the interfacial profile to 
hypothetical homogeneous phases with densities in the coexistence region. 
These hypothetical phases result from some extension of the stable 
branches into the coexistence region (the "loop"). Fur such extension no 
foundation can be found in equilibrium statistical mechanics, neither in 
homogeneous bulk systems nor in coexisting phases separated by an inter- 
face region. 

A loop may occur at some mesoscopic or bare level using the order 
parameter as main variable to describe the configurations of the system. At 
this level the classical theory describes the interface, but the fluctuations 
change the interfacial theory drastically to a nonlocal relation between 
order parameter and conjugated field. 

Renormalization on a microscopic level does not lead to a loop in any 
stage. Only the stable branches are obtained, not only on a rigorous level, 
but also approximately. Consequently, this renormalization theory for the 
interface does not involve any unstable or metastable parts of the equation 
of state. In the renormalization process the interface probes thermo- 
dynamic phases further away from coexistence rather than hypothetical 
phases in the coexistence region. 

The results described in this paper are based on renormalization of an 
Ising spin system on a lattice. Due to universality, the critical behavior of 
the interface should be the same as that for fluid interfaces. Whether the 
results can be extended to fluid interfaces further away from the critical 
point depends on the question of whether renormalization of the fluid on 
a microscopic level is possible. Conceptually there seems no problem, but 
the results are so far not very reliable. (29) 

The interfaces discussed here display the correct scaling behavior in 
the critical regime. Improved renormalization procedures will lead to 
improved scaling functions. The situation is different in the low- 
temperature regime, where a scaling behavior is found which differs in 
exponent from the behavior expected from the capillary wave theory. 
Both exponents are determined on dimensional grounds. Thus, a simple 
improvement in renormalization technique will not yield a better exponent. 
Rather, the structure of the flow at low temperatures has to be improved. 
In fact, one could argue that it is sufficient to impose a different boundary 
condition, which reflects properly the capillary waves as they occur, e.g., in 
the solid-on-solid model. Once the correct capillary wave behavior is in the 
boundary condition, it propagates to the whole low-temperature regime. So 
the problem is really to find a renormalization procedure which treats 
correctly the waves in a solid-on-solid model in its low-temperature phase. 
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Migdal's procedure is too one-dimensional to describe properly the 
capillary waves. To find the necessary improvements for low temperatures 
is the main goal for future research. 

ACKNOWLEDGMENTS 

The research described in this paper is an outgrowth of a long and 
most pleasant cooperation with J. V. Sengers on the properties of critical 
interfaces. The calculations described in the last section were carried out in 
cooperation with G. L. M. Dassen, N. Jan, and A. Kooiman. I am much 
indebted to them all for numerous discussions on the subject. 

REFERENCES 

1. F. E. J. Kruseman Aretz and E. G. D. Cohen, Physiea 26:967 (1960). 
2. J. M. J. van Leeuwen, J. Groeneveld, and J. de Boer, Physica 25:792 (1959). 
3. J. D. van der Waals, Over de Continuiteit van den gas en vloeistoftoestand, Thesis, Leiden 

(1873). 
4. C. N. Yang and T. D. Lee, Phys. Rev. 87:404 (1952). 
5. J. Thompson, Proc. R. Soe. 20:1 (1871). 
6. S. S. Chang, J. A. Horman, and A. B. Bestul, J. Res. Natl. Bur. Std. 71A:293 (1967); J. R. 

Hastings, J. M. H. Levelt Sengers, and F, W. Balfour, J. Chem. Therm. 12:1009 (1980). 
7. W. Klein, D.J. Wallace, and R. K. P. Zia, Phys. Rev. Lett. 37:639 (1977); S. N. Isakov, 

Comm. Math. Phys. 95:427 (1984). 
8. J. S. Langer, Ann. Phys. (NY) 41:108 (1967). 
9. J. D. van der Waals, Z. Phys. Chem. 13:689 (1984). 

10. B. Widom, in Phase Transitions and Critical Phenomena, Vol. 2, C. Domb and M.S. 
Green, eds. (Academic Press, London, 1972), p. 79. 

11. C. Ebner, W. F. Saam, and D. Stroud, Phys. Rev. A 14:2264 (1976). 
12. S. Fisk and B. Widom, J. Chem. Phys. 50:3219 (1969). 
13. F. P. Buff, R. A. Lovett, and F. H. Stillinger, Phys. Rev. Lett. 15:621 (1965). 
14. R. Evans, Mol. Phys. 42:1169 (1981). 
15. R. F. Kayser, Phys. Rev. A 33:1948 (1986); D. Beysens and M. Robert, J. Chem. Phys. 

87:3056 (1987). 
16. J. H. Sikkenk, J. M. J. van Leeuwen, E. O. Vossnack, and A. F. Bakker, Physica 146:622 

(1987). 
17. J. S. Huang and W. W. Webb, J. Chem. Phys. 50:3677 (1969); E. S. Wu and W. W. Webb, 

Phys. Rev. A 8:2065 (1973). 
18. J. Als-Nielsen, Physica 140A:376 (1986). 
19. T. Ohta and K. Kawasaki, Prog. Theor. Phys. 58:467 (1977); E. Br6zin and S. Feng, Phys. 

Rev. B 29:472 (1984); 31:1022 (1985). 
20. B. Widom, 3, Chem. Phys. 43:3892 (1965). 
21. D. Jasnow and J. Rudnick, Phys. Rev. Lett. 41:698 (1978); D. Jasnow, Rep. Prog. Phys. 

47:1059 (1984). 
22. J. V. Sengers and J. M.J. van Leeuwen, Phys. Rev. A 39:6346 (1989). 



Van der Waals Loop 453 

23. J. D. Weeks, J. Chem. Phys. 67:3106 (1977). 
24. M. R. Moldover, Phys. Rev. A 31:1022 (1985); H. Chaar, M.R. Moldover, and J.W. 

Schmidt, J. Chem. Phys. 85:418 (1986); H.L. Gielen, O.B. Verbeke, and J. Thoen, 
~L Chem. Phys. 81:6154 (1984). 

25. A. A. Migdal, Soy. Phys. JETP 42:413, 743 (1976). 
26. G. L. M. Dassen, N. Jan, A. Kooiman, and J. M. J. van Leeuwen, to be published. 
27. J. M. J. van Leeuwen and J. V. Sengers, Physica 138A:1 (1986). 
28. G. L. M. Dassen, A. Kooiman, and J. M.J. van Leeuwen, Physica 159A:91 (1989). 
29. F. van Dieren and J. M. J. van Leeuwen, Physica 136A:21 (1986). 


